Neurotransmission regulates stability of acetylcholine receptors at the neuromuscular junction.
نویسندگان
چکیده
The majority of acetylcholine receptors (AChRs) at normally innervated neuromuscular junctions are stable, with a half-life averaging about 12 d in most rodent muscles. Following denervation, the AChRs turn over much more rapidly after a lag period. The mechanism by which motor nerves normally maintain stabilization of junctional AChRs is not yet known. In order to determine whether synaptic transmission plays a role in this process, we have compared the effects of pre-and postsynaptic chloinergic blockade with those of surgical denervation. 125l-alpha-bungarotoxin was used to label junctional AChRs and follow their loss over time. Presynaptic blockade of quantal ACh transmission was produced in the soleus (SOL) and flexor digitorum brevis muscles of mice by repeated injections of type A botulinum toxin. Postsynaptic blockade of quantal and nonquantal ACh transmission was produced by continuous infusion of alpha-bungarotoxin in the SOL. Our findings show that treatment with botulinum toxin resulted in an accelerated loss of junctional AChRs that was similar to the effects of surgical denervation, though briefly delayed in its onset. Treatment with alpha-bungarotoxin produced an effect that was quantitatively equivalent to the accelerated loss of junctional AChRs following surgical denervation, with an identical time course. These results support the concept that cholinergic transmission is a mediator of the neural control of stability of junctional AChRs. The possibility that receptor stabilization may represent a mechanism of long-term postsynaptic "memory" dependent on neural transmission is discussed.
منابع مشابه
Roles of Neurotransmitter in Synapse Formation Development of Neuromuscular Junctions Lacking Choline Acetyltransferase
Activity-dependent and -independent signals collaborate to regulate synaptogenesis, but their relative contributions are unclear. Here, we describe the formation of neuromuscular synapses at which neurotransmission is completely and specifically blocked by mutation of the neurotransmitter-synthesizing enzyme choline acetyltransferase. Nerve terminals differentiate extensively in the absence of ...
متن کاملEphexin1 Is Required for Structural Maturation and Neurotransmission at the Neuromuscular Junction
The maturation of neuromuscular junctions (NMJs) requires the topological transformation of postsynaptic acetylcholine receptor (AChR)-containing structures from a simple plaque to an elaborate structure composed of pretzel-like branches. This maturation process results in the precise apposition of the presynaptic and postsynaptic specializations. However, little is known about the molecular me...
متن کاملChapter 22 – Neuromuscular Physiology and Pharmacology
The physiology of neuromuscular transmission could be analyzed and understood at the most simple level by using the classic model of nerve signaling to muscle through the acetylcholine receptor. The mammalian neuromuscular junction is the prototypical and most extensively studied synapse. Research has provided more detailed information on the processes that, within the classic scheme, can modif...
متن کاملAcetylcholine-Induced Inhibition of Presynaptic Calcium Signals and Transmitter Release in the Frog Neuromuscular Junction
Acetylcholine (ACh), released from axonal terminals of motor neurons in neuromuscular junctions regulates the efficacy of neurotransmission through activation of presynaptic nicotinic and muscarinic autoreceptors. Receptor-mediated presynaptic regulation could reflect either direct action on exocytotic machinery or modulation of Ca2+ entry and resulting intra-terminal Ca2+ dynamics. We have mea...
متن کاملLong-term Low-Intensity Endurance Exercise along with Blood-Flow Restriction Improves Muscle Mass and Neuromuscular Junction Compartments in Old Rats
Background: During the aging process, muscle atrophy and neuromuscular junction remodeling are inevitable. The present study aimed to clarify whether low-intensity aerobic exercise along with limb blood-flow restriction (BFR) could improve aging-induced muscle atrophy and nicotinic acetylcholine receptors (nAChRs) at the neuromuscular junction.Methods: Forty-eight male Wistar rats, aged 23–24 m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 9 8 شماره
صفحات -
تاریخ انتشار 1989